### Water Quality Standards



Willamette Basin Mercury Variance Rulemaking – Effectiveness of Treatment

November 1, 2018 DEQ Headquarters



## Presentation Objectives

- Committee members understand the capability of municipal wastewater treatment technologies to remove mercury.
- Committee members have the opportunity to provide information related to treatment efficiency.



# Threshold questions

- Can point sources treat effluent to meet WQBELs needed to meet the water quality standard, 0.14 ng/l?
- What are typical municipal treatment system effluent levels?



| TREATMENT TECHNOLOGY                               | VOLUME RANGE OF<br>KNOWN USES | TREATMENT<br>ABILITY     |
|----------------------------------------------------|-------------------------------|--------------------------|
| Membrane Filtration – Microfiltration (ceramic)    | Unknown                       | Bench scale to 0.92 ng/L |
| Membrane Filtration – Ultrafiltration (polymer)    | Unknown                       | Bench scale to 0.92 ng/L |
| Membrane Filtration – Reverse Osmosis              | Low volume                    | Bench scale to 0.92 ng/L |
| Ion Exchange                                       | 0.015 MGD<br>(5-50 GPM)       | 1 ng/L                   |
| Sludge Activation                                  | 5-25 MGD                      | 3-50 ng/L                |
| Sludge Activation w/ Nutrient Removal & Filtration | 5-25 MGD                      | 1-10 ng/L                |



# National studies of Hg in municipal effluent

- Washington HDR Study:
  - Secondary treatment 9 to 66 ng/l
  - Secondary with filters 2-10 ng/l
- California (2009-2015):
  - Most tertiary plants can treat to less than 4 ng/l
  - 92% of POTWs <12 ng/l as an annual average every year from 2009-2015
  - 61% of POTWs <4 ng/l as an annual average every year from 2009-2015
  - 13% of POTWs <1 ng/l as an annual average every year from 2009-2015
- Minnesota:
  - Average eff. concentration from major POTWs decreased from 3.6 ng/l (2008) to 1.6 ng/l (2017).



# WWTP Treatment in Oregon

#### Pre-treatment data from 2016

| Tresumeni | Avg. influent conc.<br>(ng/l) |      |      | Avg. s<br>(ng/l) |      | (0)n(6. | Avg. 9 | Avg. % removal |      |  |
|-----------|-------------------------------|------|------|------------------|------|---------|--------|----------------|------|--|
|           | Avg.                          | Max. | Min. | Avg.             | Max. | Min.    | Avg.   | Max.           | Min. |  |
| Secondary | 74.5                          | 172  | 24   | 3.1              | 8.3  | 1.2     | 91.8   | 98.8           | 83.2 |  |
| Advanced  | 75                            | 97   | 48   | 1.4              | 2.2  | 1.1     | 97.6   | 97.0           | 98.0 |  |



### Source Reduction

 Source reduction can reduce what's in influent and effluent.

Waler



### Industrial sources

DEQ has little data from industrial sources.

Can industrial dischargers provide data that would be relevant to discussion?





### Conclusion

There is no technology that has been used to treat municipal wastewater at a large enough scale that can reliably treat to less than 1 ng/l.



## Questions



